Education
PhD: University of Illinois at Urbana-Champaign (Electrical Engineering)
Research and Practice Interests
Medical image formation and understanding; Emission tomography imaging; Machine learning integrated image reconstruction and analysis; Radiation dose reduction; Outcome prediction; Diagnostic and prognostic advancement.
Research Support
Grant: #1R01HL170245 - 01A1 Investigators: Jing Tang & Albert Sinusas (MPI), 2024 -2029 NIH, "Novel Methodologies to Improve Coronary Artery Disease Diagnostics with Dynamic PET", Role: PI, $3,380,095, Active
Grant: #R03EB028070 Investigators: Jing Tang, 2019 -2023 NIH, “Dose Reduction in Pediatric/Adolescent Brain PET Imaging through Artificial Neural Networks”, Role: PI, $244,403, Completed
Grant: #1454552 Investigators: Jing Tang, 2015 -2021 NSF, "CAREER: Next Generation Positron Emission Tomography Integrated with Magnetic Resonance Imaging", Role: PI, $526,178, Completed
Grant: #1228091 Investigators: Jing Tang, 2012 -2015 NSF, "BRIGE: Magnetic Resonance Imaging Assisted Dynamic Positron Emission Tomography Imaging", Role: PI, $174,648, Completed
Publications
Peer Reviewed Publications
A. Li, B. Yang, M. Naganawa, K. Fontaine, T. Toyonaga, R. E. Carson and J. Tang (2023. ) Dose reduction in dynamic synaptic vesicle glycoprotein 2A PET imaging using artificial neural networks.Phys. Med. Biol., , 68 (24 ) ,245006 More Information
B. Yang, X. Wang, A. Li, J. B. Moody, and J. Tang (2021. ) Dictionary learning constrained direct parametric reconstruction in dynamic PET myocardial perfusion imaging. IEEE Tran. Med. Imaging, , 40 (12 ) , 3485 - 3497 More Information
M. P. Adams, A. Rahmim, and J. Tang (2021. ) Improved motor outcome prediction in Parkinson’s disease applying deep learning to DaTscan SPECT images. Comput. Biol. Med., , 132 , 104312 More Information
X. Wang, B. Yang, J. B. Moody, and J. Tang (2020. ) Improved myocardial perfusion PET imaging using artificial neural networks. Phys. Med. Biol., , 65 (14 ) , 145010 More Information
M. R. Salmanpour, M. Shamsaei, A. Saberi, I. S. Klyuzhin, J. Tang, V. Sossi, A. Rahmim (2020. ) Machine learning methods for optimal prediction of motor outcome in Parkinson’s disease. Phys. Medica, , 69 , 233 -240More Information
J. Tang, B. Yang, M. P. Adams, N. N. Shenkov, I. S. Klyuzhin, S. Fotouhi, E. Davoodi-Bojd, L. Lu, H. Soltanian-Zadeh, V. Sossi, and A. Rahmim (2019. ) Artificial neural network-based prediction of outcome in Parkinson’s disease patients using DaTscan SPECT imaging features. Mol. Imaging, Biol., , 21 , 1165 -1173More Information
X. Wang, B. Yang, M. P. Adams, X. Gao, N. A. Karakatsanis, and J. Tang (2018. ) Improved myocardial perfusion PET imaging with MRI assisted reconstruction incorporating multi-resolution joint entropy. Phys. Med. Biol., , 63 (17 ) ,175017 More Information
B. Yang, L. Ying, and J. Tang (2018. ) Artificial neural network enhanced Bayesian PET image reconstruction. IEEE Tran. Med. Imaging, , 37 (6 ) ,1297 -1309More Information
X. Wang, A. Rahmin, and J. Tang (2017. ) MRI assisted dual motion correction for myocardial perfusion defect detection in PET imaging. Med. Phys., , 44 (9 ) , 4536 - 4547 More Information
Post Graduate Training and Education
Postdoctoral Fellow, Radiology, Johns Hopkins University, , Baltimore, MD